
Atmospheric Reentry Geometry Shader
Robert Lindner

Introduction
In order to simulate the effect of an object – be it an asteroid, UFO or spacecraft – entering the

atmosphere of a planet, I created a geometry shader effect that can work with variable geometry to

visually approximate the plasma stream coming off of the object. In this paper I will present my

approach to the subject. In real life this effect is created by the friction from air particles bouncing off

the object travelling at high velocities (usually many kilometers every second), causing such an extreme

head that a thick stream of plasma will form around the object and ablate any materials on the surface.

It is relevant in modern spaceflight (for instance Apollo and Soyuz space capsules, the Space Shuttle, and

the Falcon 9 landing rocket), since real spacecraft use the friction to reduce most of the speed to get

from orbital to landing velocity. As a visualization would be useful in spaceflight simulations and video

games.

The main problem with the effect though is that no one really knows what it would look like from close

up, but that is exactly what needs to be determined if the visualization is supposed to show the outside

of the spacecraft. The only real reference available are photos taken from very far away with low detail

and footage taken from the interior of reentering spacecraft.

Additionally computer and wind tunnel simulations have been made, and artistic visualizations exist.

The effect has notably been recreated in the game Kerbal Space Program and the movie Gravity, while

the latter used fluid dynamics which rely on expensive calculations that are not possible in real time.

Nethertheless I found that from the reference I have the effect can be split into four different parts:

Effect Breakdown

Particles
The first is a long stream of particles behind the object that changes with the hue and intensity with the

particles lifetime. This effect can be replicated with particle systems in most game engines and will

therefore not be the main focus of the geometry shader, although it needs to be ensured that the

colours match with the colours of the shader.

The second effect is another one that can be achieved with a particle system which would simulate small

chunks of ablated material flying off of the surface of the object, which I will also ignore in this paper for

simplicity, although I would recommend implementing it for a full simulation.

Geometry
The third effect is the first that can be created with a geometry shader: At the highest velocities air

molecules bounce off directly in front of the object and clutter the space in front of it, while creating

plasma that is more hot than the rest and therefore appears blue. To visualize that the responsible pass

of the shader will copy the object foreward along its movement direction, giving it a blue color and

intensity depending on the angle.

The fourth and most notable effect are the air molecules streaming around the object. Those streams

may be rippling randomly at high velocities and will seem to be encapsulating the object along its

movement vector, except at the back, from where the object would be visible if not for the long particle

stream behind it. This part of the effect is like the previous one rather bright and may range in color

from blue to orange to red. The effect is replicated by extruding geometry along the reverse velocity

vector and lighting the object directionally from infront of it.

Shader Implementation

For my shader implementation I separate the shader into three passes:

First pass
The first pass renders the object normally with the addition of the extra light which is placed along the

velocity vector of the object in order to visualize the frontal part of the encapsulation of the object,

since I want to avoid extruding long geometry through the middle of its surfaces because it poke all the

way though the object. The brightness of the light is affected by the overall strength of the effect, so it is

multiplied with the effect intensity.

This light is also rendered with its own shadow map, which is used both to occlude in the pixel shader

and the geometry shader later.

Additionally I create some artificial lighting to simulate the light shining off a planet, but that is only for

visual enhancement and does not affect the reentry effect.

Here the result can be seen:

Second Pass
This is the main bulk of the work, here the geometry is extruded along the velocity vector.

To do this, multiple things need to be taken into consideration:

 Occlusion: Only surfaces directly exposed to the airstream are extruded. To do this the same

shadow map as mentioned earlier is used in order to prevent unexposed surfaces from creating

plasma. Additionally if the angle of the normal and the movement vector is larger than 90° it

also is not extruded, this is determined with a dot product

 A consistent stream regardless of geometry density: In my first implementation I simply treated

the extrusion on a vertex by vertex basis, extruding a triangle strip from every point, but since

models for realtime applications usually do not have consistent geometry density this would

result in large gaps in some places and extremely dense plasma in others. So instead the input

geometry needs to be a triangle in order to extrude triangle strips along the edges of the object.

 Density: As mentioned earlier I only want to extrude the geometry if its on the edge in order to

prevent it poking through the spacecraft. To do that I use the same dot product inverted and

raise it to a power as a length multiplier, so that only the edges on the edge of the model

actually extrude long streaks of plasma

 Randomness: In order to make a random length I use a noise texture which is treated like an

animated spritesheet. The subimage index of this frame and the next frame are passed along

with the texture and a float that indicates the interpolation value between the new frames. The

calculation of the indices and interpolation value is handled by the software, not in the shader.

The indices are used to calculate the texture coordinates for two texture lookups. The values

found by the lookups are interpolated between. To make it look a little more smooth, and added

to the length of the extrusion

 Color: The color will go from red at the end of the streak over orange to a value between yellow

and blue depending on the intensity of the effect. The alpha is also determined by the intensity,

and additive blending is used for the streaks without writing to the depth buffer, just like with

particle systems that use textures on billboarded planes in order to prevent artifacts.

 Geometry Construction: I found that the effect works quite well by giving every strip 6 triangles

(creating three points along the streak, one at the origin(yellow/blue), one somewhere along

the middle(orange), and one at the end (pale red)). Using the middle vertices the strip is slightly

curved, which improves the quality of the effect without too much performance impact. Since a

lot of streaks are rendered using a lot more geometry wont significantly enhance the level of

detail of the effect.

Here the result of this can be seen:

Third Pass:
This is already looking rather good, but it is still missing the effect of blue particles bouncing off at the

front, so that is what the third pass takes care of.

It determines the geometry that needs to be copied forward based on the shadow map and the dot

product between the normal and the movement vector, and is also raised to a power, which also helps

determine the intensity of its blue color, to ensure that only faces with an angle very close to the

velocity vector will produce this effect.

And here is the result of all the passes combined:

With some visual enhancements this is the look I managed to achieve:

Conclusion:

I find the shader created in this project quite satisfying, but I think there are one or two things that could

be done to improve it. Notably it could take into consideration velocity vs air pressure to determine the

strengths of different effects. For instance at a high velocity but low air pressure the streaks would be

extremely long but the effect itself rather weak in terms of blending and would be blue to purple color

wise, then at a high air pressure but low speed (later in the reentry) the streaks are not particularly long

but rather hot, with the color more orange-ish, and at even lower speeds the color could be changed to

white in order to represent mach effects (as is done in Kerbal Space Program).

Something that also could be done is blending the models diffuse texture between an intact and an

ablated texture that looks more damaged, but I didn’t use any diffuse texturing in this demo.

Lastly the particles could be used to enhance the visuals even more.

Regardless the current state of the shader should be well usable for any sort of spacesim game or

program and I hope that this paper has helped explain how it can be constructed.

Sources:
 https://www.youtube.com/watch?v=esMZjRtol5c

https://youtu.be/3nBo87Ne4Ss?t=31s

http://farm4.staticflickr.com/3063/2360738075_931822b24f.jpg

https://youtu.be/Cf_-g3UWQ04?t=1m23s

https://www.youtube.com/watch?v=esMZjRtol5c
https://youtu.be/3nBo87Ne4Ss?t=31s
http://farm4.staticflickr.com/3063/2360738075_931822b24f.jpg
https://youtu.be/Cf_-g3UWQ04?t=1m23s

https://www.youtube.com/watch?v=MtWzuZ6WZ8E&nohtml5=False

https://youtu.be/KyZqSWWKmHQ?t=4m2s

https://youtu.be/mXTxQko-JH0?t=24m31s (5 minutes)

http://www.nasa.gov

https://www.youtube.com/watch?v=MtWzuZ6WZ8E&nohtml5=False
https://youtu.be/KyZqSWWKmHQ?t=4m2s
https://youtu.be/mXTxQko-JH0?t=24m31s
http://www.nasa.gov/

